Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(7): 5067-5091, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37071266

RESUMO

Gold mining activities are undertaken both at large and artisanal scale, often resulting in serious 'collateral' environmental issues, including environmental pollution and hazard to human and ecosystem health. Furthermore, some of these activities are poorly regulated, which can produce long-lasting damage to the environment and local livelihoods. The aim of this study was to identify a new workflow model to discriminate anthropogenic versus geogenic enrichment in soils of gold mining regions. The Kedougou region (Senegal, West Africa) was used as a case study. Ninety-four soil samples (76 topsoils and 18 bottom soils) were collected over an area of 6,742 km2 and analysed for 53 chemical elements. Robust spatial mapping, compositional and geostatistical models were employed to evaluate sources and elemental footprint associated with geology and mining activities. Multivariate approaches highlighted anomalies in arsenic (As) and mercury (Hg) distribution in several areas. However, further interpretation with enrichment factor (EFs) and index of geoaccumulation (IGeo) emphasised high contamination levels in areas approximately coinciding with the ones where artisanal and small scale mining (ASGM) activities occur, and robust compositional contamination index (RCCI) isolated potentially harmful elements (PHE) contamination levels in very specific areas of the Kedougou mining region. The study underlined the importance of complementary approaches to identify anomalies and, more significantly, contamination by hazardous material. In particular, the analyses helped to identify discrete areas that would require to be surveyed in more detail to allow a comprehensive and thorough risk assessment, to investigate potential impacts to both human and ecosystem health.


Assuntos
Mercúrio , Poluentes do Solo , Humanos , Ouro/análise , Monitoramento Ambiental/métodos , Ecossistema , Solo , Fluxo de Trabalho , Mercúrio/análise , Mineração , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
2.
Sci Total Environ ; 669: 185-193, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878927

RESUMO

In Senegal, the environmental impact of artisanal small-scale gold mining (ASGM) using mercury (Hg) is poorly documented despite its intensification over the past two decades. We report here a complete dataset including the distribution and speciation of Hg in soil, sediment, and water in pristine and ASGM impacted sites of the Gambia River ecosystem (Kedougou region - eastern Senegal). Selective extraction showed that soils surrounding ASGM activities were contaminated with elemental Hg [Hg(0)] at concentrations up to 3.9 mg kg-1. In the Gambia River, high total Hg (THg: 1.16 ±â€¯0.80 mg kg-1) and methylmercury (MeHg: 3.2 ±â€¯2.3 ng g-1) were also measured in sediment samples collected at ASGM sites. Along the stream, THg concentrations in sediment decrease with distance from the ASGM sites, while those of methylmercury increase downstream. The study of THg and MeHg partitioning between filtered surface water and suspended particles demonstrate that particulate transport is responsible for the downstream dissemination of the Hg contamination from ASGM sites. Sedimentation of fine particles enriched in Hg downstream ASGM sites likely favors MeHg production and accumulation in sediment. Although elemental Hg is weakly labile, surface soil erosion may also provide important and long-term Hg inputs to downstream aquatic ecosystems, where it can be oxidized and methylated. Finally, the dissemination of THg and MeHg downstream from the ASGM sites in the Gambia River may constitute a long-term source of contamination and can have a large scale impact on the aquatic ecosystem through biomagnification.

3.
Environ Sci Pollut Res Int ; 22(1): 586-97, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25091167

RESUMO

The contamination of drinking water resources by toxic metals is a major problem in many parts of the world, particularly in dense populated areas of developing countries that lack wastewater treatment facilities. The present study characterizes the recent evolution with time of some contaminants deposited in the Congo River and Lake Ma Vallée, both located in the vicinity of the large city of Kinshasa, capital of Democratic Republic of Congo (DRC). Physicochemical parameters including grain size distribution, organic matter and trace element concentrations were measured in sediment cores sampled from Congo River (n = 3) and Lake Ma Vallée (n = 2). The maximum concentration of trace elements in sediment profiles was found in the samples from the sites of Pool Malebo, with the values of 107.2, 111.7, 88.6, 39.3, 15.4, 6.1 and 4.7 mg kg(-1) for Cr, Ni, Zn, Cu, Pb, As and Hg, respectively. This site, which is characterized by intense human activities, is especially well known for the construction of numerous boats that are used for regular navigation on Congo River. Concerning Lake Ma Vallée, the concentration of all metals are generally low, with maximum values of 26.3, 53.6, 16.1, 15.3, 6.5 and 1.8 mg kg(-1) for Cr, Ni, Zn, Cu, Pb and As, respectively. However, the comparison of the metal profiles retrieved from the different sampled cores also reveals specific variations. The results of this study point out the sediment pollution by toxic metals in the Congo River Basin. This research presents useful tools for the evaluation of sediment contamination of river-reservoir systems.


Assuntos
Sedimentos Geológicos/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Poluição da Água/análise , Arsênio/análise , Cidades , República Democrática do Congo , Intoxicação por Metais Pesados , Humanos , Lagos/química , Metais/análise , Compostos Orgânicos/análise , Intoxicação , Rios/química
4.
Environ Sci Pollut Res Int ; 22(9): 7101-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25501641

RESUMO

We investigated mercury (Hg) exposure of food web and humans in the region of Kedougou, Senegal, where Hg is used for gold amalgamation in artisanal small-scale gold mining (ASGM). For this purpose, total mercury (THg) concentration was determined in eight fish species and two shellfish species from Gambia River and in human hair from 111 volunteers of different age and sex, living in urban locations (Kedougou and Samekouta) or in ASGM areas (Tinkoto and Bantako). THg concentrations in fish samples range from 0.03 to 0.51 mg kg(-1) wet weight (ww) and 0.5 to 1.05 mg kg(-1) ww for shellfish. THg concentrations in fish are below the WHO guideline of 0.5 mg kg(-1) ww, whereas 100 % of shellfish are above this safety guideline. In the entire set of fish and shellfish samples, we documented a decrease of THg concentrations with increasing selenium to mercury (Se:Hg) ratio suggesting a protection of Se against Hg. However, local population consuming fish from the Gambia River in the two ASGM areas have higher THg concentrations (median = 1.45 and 1.5 mg kg(-1) at Bantako and Tinkoto) in hair than those from others localities (median = 0.42 and 0.32 mg kg(-1) at Kedougou town and Samekouta) who have diverse diets. At ASGM sites, about 30 % of the local population present Hg concentrations in hair exceeding 1 mg kg(-1), defined as the reference concentration of Hg in hair. We also evidence a higher exposure of women to Hg in the Tinkoto ASGM site due to the traditional distribution of daily tasks where women are more involved in the burning of amalgams. The discrepancy between the calculated moderate exposure through fish consumption and the high Hg concentrations measured in hair suggest that fish consumption is not the only source of Hg exposure and that further studies should focus on direct exposure to elemental Hg of population living at ASGM sites.


Assuntos
Peixes , Mercúrio/química , Mercúrio/toxicidade , Animais , Exposição Ambiental , Monitoramento Ambiental , Feminino , Cadeia Alimentar , Ouro , Cabelo/química , Humanos , Resíduos Industriais , Masculino , Mineração , Rios , Selênio , Senegal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...